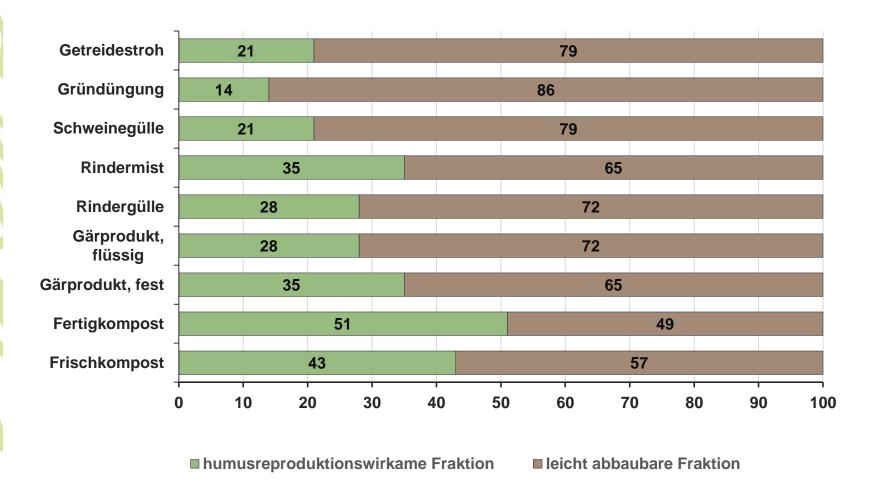
### Humus, Bodenfruchtbarkeit und Klimaresilienz: Wie kann dies durch Komposte unterstützt werden?

Dr Christian Bruns

Fachinformationsveranstaltung am 15. März 2023 in Oppenheim



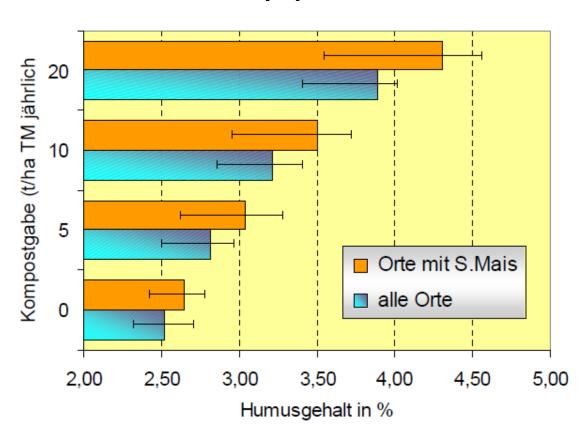

### Inhaltliche Schwerpunkte

- Einsatz von Biogut- und Grüngutkomposten in zweijährigen Versuchen und in Langzeitversuchen
  - Kompost-Effekte auf den Humusgehalt und auf bodenbiologische und -physikalische Eigenschaften
  - Systemleistungen von Komposten auf Boden und Pflanze
- Suppressive Effekte von Komposten
  - Reihenapplikation von Komposten zur Kontrolle von Rhizoctonia solani in Öko-Kartoffeln
- Bemerkungen zur Klimaproblematik und Kompost



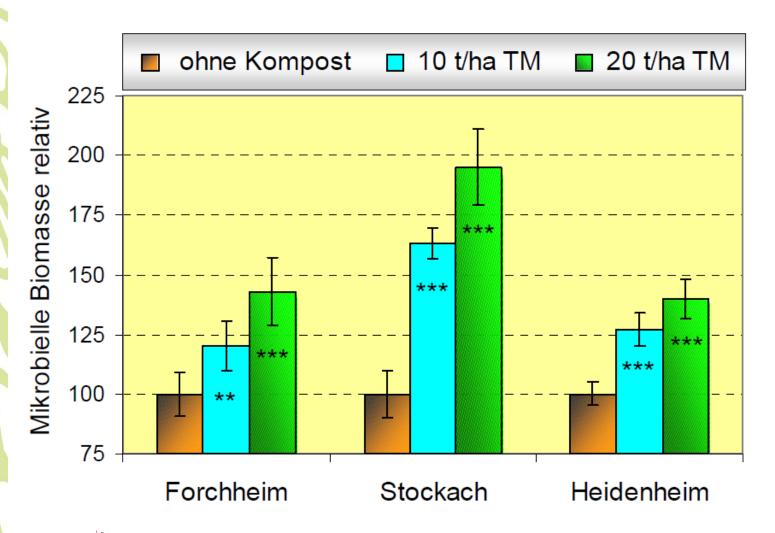
# Humusreproduktionswirksame Fraktion der Organischen Substanz in organischen Düngern (Reinhold, 2006)




## Einsatz von Biogut- und Grüngutkomposten Langzeitversuch (LTZ, 2008)

- 9-12 jähriger Einsatz
- 5 Standorte in Baden Württemberg
- 0, 5, 10, 20t TM /ha Biogutkomposte
- Mais, Winterweizen, Wintergerste
- [0, 50, 100% N Gabe]
  jährliches N-Düngungsoptimum der angebauten Fruchtart
- https://www.vhe.de/fileadmin/vhe/pdfs/Publikationen/Veroeffentlichungen/Kompost-Abschlussbericht.pdf LTZ, 2008

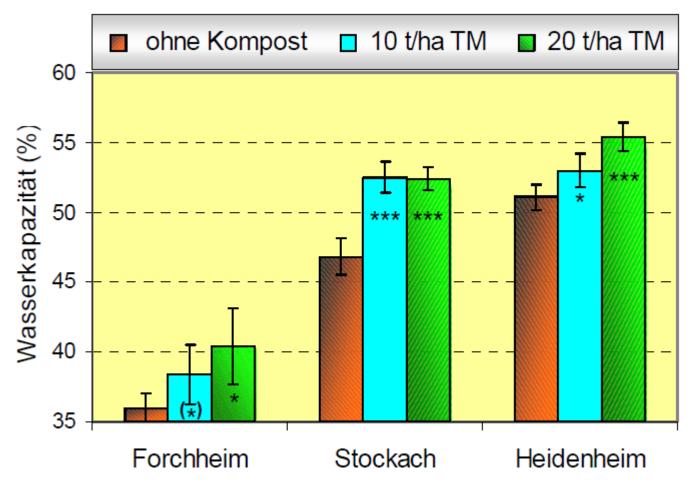



### Langzeitversuch (LTZ, 2008)

#### Humus Gehalt (%)



### Langzeitversuch (LTZ, 2008)


**Bodenleben Cmik (mikrobielle Biomasse %, ohne Kompost = 100)** 



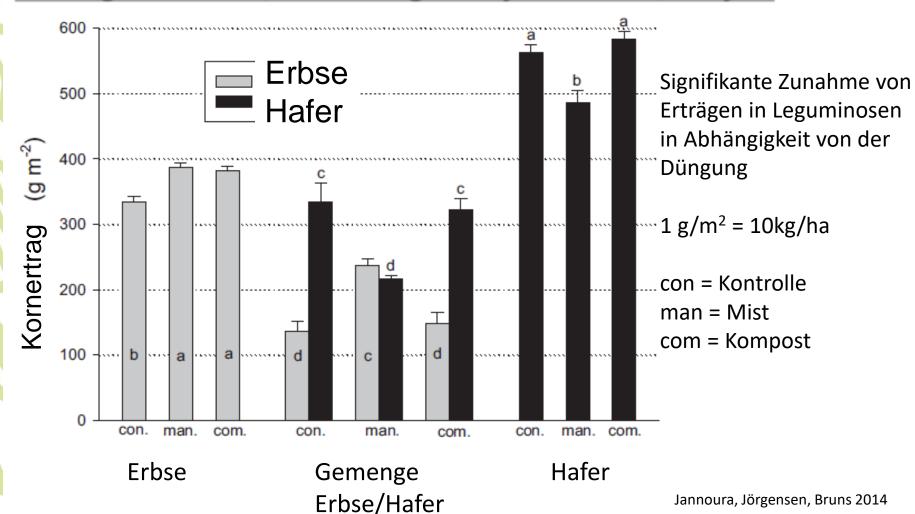
LTZ, 2008

### Langzeitversuch (LTZ, 2008)

#### Bodenphysik (WK max)

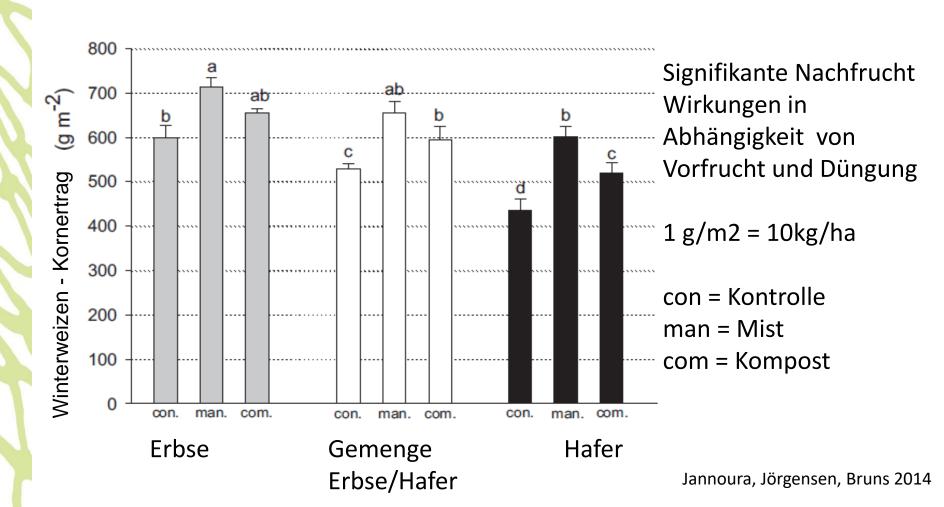


LTZ, 2008

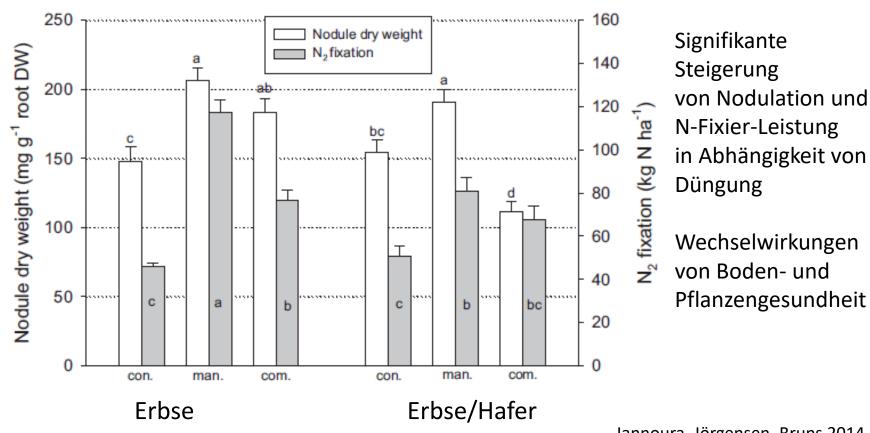

### Einsatz von Grüngutkompost und Mist -Steigerungen komplexer Systemleistungen

- Versuch mit Erbsen-Reinsaat, Gemenge Erbse-Hafer, Hafer-Reinsaat
- Düngung mit 10t C Zugabe/ha äquivalent 40 t Grüngut-Kompost (3 Monate Rotte)
   20 t Pferde-Mist
- Nachfruchtwirkung in Winterweizen

2 Publikationen Jannoura, Jörgensen, Bruns (2013 und 2014)




### Systemleistungen von Komposten und Mist Erträge Erbsen, Gemenge Hafer-Erbse, Hafer






### Systemleistungen von Komposten und Mist Erträge Nachfrucht Winterweizen



### Systemleistungen von Komposten und Mist Knöllchenbildung (Nodulation) Erbse und N-Fixierungsleistung



### Systemleistungen von Komposten und Mist

kg mikrobielles N / ha in Abhängigkeit vom Einsatz von Grüngutkompost und Mist (signifikant p < 0,01)

(bezogen auf 20 cm Bodentiefe, Lagerungs-Dichte 1,5)

| Behandlung      | mikrobielles N<br>g/t Boden | mikrobielles N<br>kg / ha |
|-----------------|-----------------------------|---------------------------|
| Kontrolle       | 51                          | 153                       |
| Pferdemist      | 78                          | 234                       |
| Grüngutkomposte | 64                          | 192                       |

Jannoura, Jörgensen, Bruns 2014



### **Fazit**

- Organische Substanz stützt und forciert bodenbiologische Prozesse – Komposte sind dafür zentral
  - Steigerungen in der mikrobiellen Aktivität, Erhöhungen der CO2-Respirationsrate, Enzymaktivitäten
  - Verbesserte Mineralisationsraten führen zu einer höheren Bereitstellung von Nährstoffen
- Die erhöhte mikrobielle Biomasse ist Speicher und Transferfaktor für essentielle Pflanzennährstoffe
- Wechselwirkungen zu physikalischen Parametern (Porenvolumen, Wasserkapazität) verstärken diese Prozesse

### Reihenapplikation von Komposten zur Kontrolle von Rhizoctonia solani in Öko-Kartoffeln

Suppressive Effekte von Komposten für die praktische Anwendung nutzbar machen



### Das Problem Rhizoctonia solani







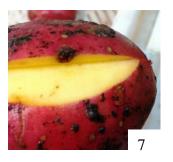
Boden

Fehlstellen

Nekrosen an Stängeln und

Stolonen




Ertrags- und Qualitätseinbußen (Rohertrag und marktfähige Ware) Pflanzgut !!!



Pflanzgut



Deformationen

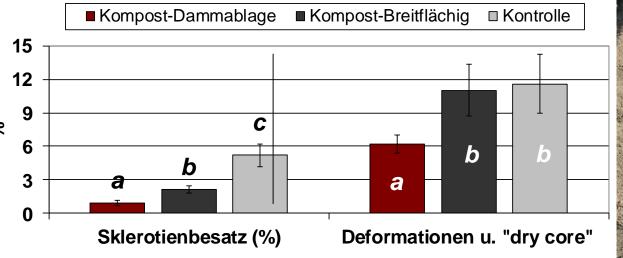


Sklerotien



Dry Core

Wenige Knollen, Unter- und Übergrößen


Fotos: Bruns (1), Behrens (2,3,4), Finckh (5), Schulte Geldermann (6, 7, 8)

### Breitflächige Anwendung vs. Reihenapplikation

Reihenapplikation von Kompost

als Teil pflanzenbaulicher Regulierungsmaßnahmen

Begrenzung: 5 t TM/ha/Jahr

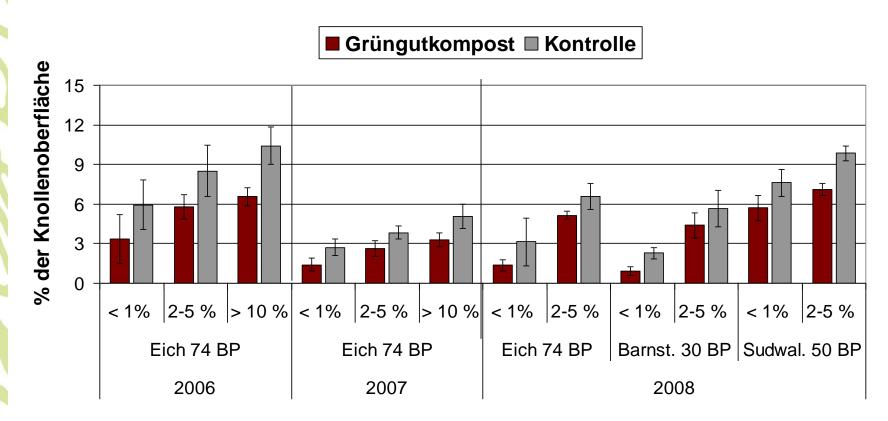




Quelle: E. Schulte-Geldermann 2008, Fotos: Bohne, Behrens

### Verbesserung Bestandsentwicklung

Mit Kompost

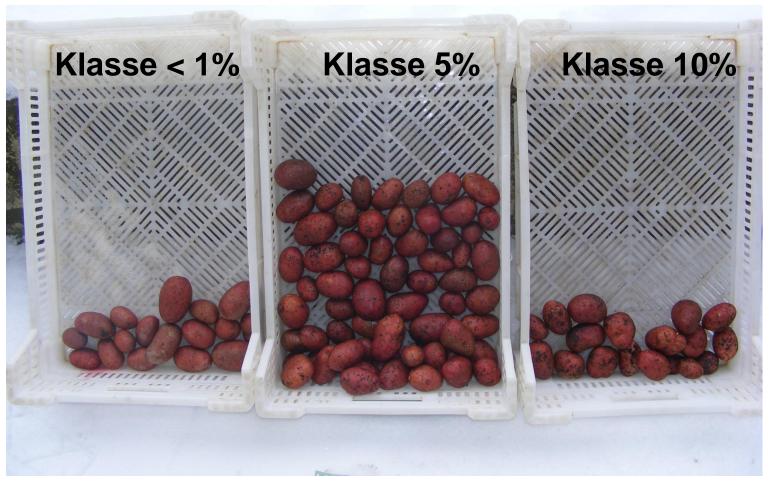





Infektionsstufe 5% Sklerotienbesatz Pflanzgut

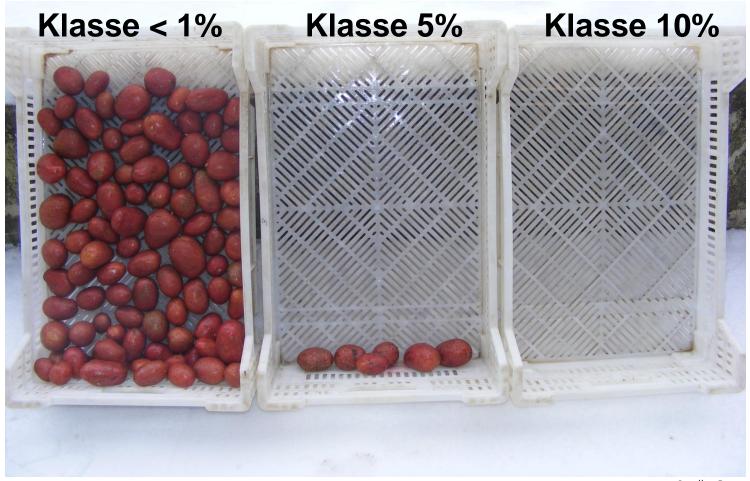
Quelle: Bruns

### Sklerotienbesatz (mittlerer Befall, % Oberfläche) Ernteknollen 2006 - 2008




- Kompost reduzierte Sklerotienbesatz um 30-50% \*\*\*
- Ausgangsbesatz von 2-5 u. >10% erhöhte den Besatz im Erntegut um Ø 40% bzw. 55 % \*\*\*




Schulte-Geldermann, 2008

### Impressionen Knollenqualität (2010) Ohne Kompost, Pflanzgut Infektion 2-5%



Quelle: Bruns

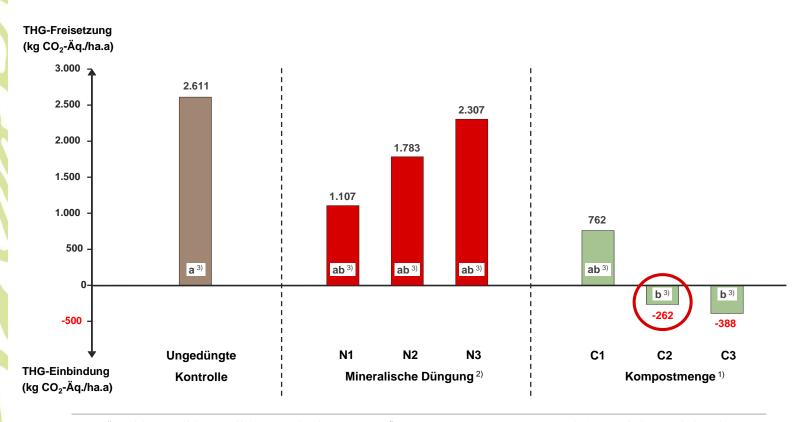
### Impressionen Knollenqualität (2010) 5t Kompost, Pflanzgut Infektion 2-5%



### Schlußfolgerung

- Grüngut und Biogutkomposte besitzen ein hohes Potential positiv auf Bodengesundheit und Bodenfruchtbarkeit einzuwirken
- Suppressive Effekte gegenüber bodenbürtigen Pflanzenkrankheitserregern stellen ein besonderes Merkmal qualitativ hochwertiger Komposte dar
- Einsatz von 5t\*ha-1 TM Grüngut– oder Biogutkomposte als Reihenapplikation ist eine erfolgreiche Maßnahme zur Reduzierung von R. solani in Kartoffeln und zur Verbesserung der Qualität des Erntegutes (Pflanzgutes)
- Gütegesicherte Komposte erfolgreich in der Tendenz mit Rottezeiten von 4-6 Monaten (allerdings verschiedene Kenngrößen wie Reifephasen, Kohlenstoffgehalte u.a. beachten)

### Komposte und Klimaschutz


#### Bodenzustand bei langjährig mit Kompost bewirtschaftetem Boden im Vergleich zum Nachbargrundstück ohne Komposteinsatz nach einem Extremregen im April 2018 (40 mm in 30 Minuten, Scheuermann, 2022)



1,8 % Humus

3,0 % Humus

### Treibhausgas (THG) — Bilanz des Ackerbau-Gesamtsystems in einem 14-jährigen Feldversuch mit und ohne Einsatz von Biogutkompost (nach Erhart et.al. 2016)



<sup>1) 8 (</sup>C1) bzw. 14 (C2) bzw. 20 (C3) t Kompost (FM)/ha.a

<sup>2)</sup> Durchschnittliches N-Düngungsniveau: 29 (N1) bzw. 46 (N2) bzw. 62 (N3) kg N/ha.a

<sup>3)</sup> Varianten, die keinen gleichen Buchstaben aufweisen, unterscheiden sich signifikant (p ≤ 0,05) nach Tuckey's HSD

## Vielen Dank für Ihre Aufmerksamkeit und an die Förderer!

- Niedersächsisches Landwirtschaftsministerium
- Ökokontor, Uelzen
- Europlant, Lüneburg
- Grimme, Damme
- Versuchswesen Fachgebiete Agrartechnik, Ökol. Pflanzenbau und Pflanzenschutz
- Land Hessen/EU
- allen beteiligten Landwirt\*innen und KollegInnen/Studierenden in Feld und Labor

### Quellen

Jannoura, R., Jörgensen, R., Bruns. C. 2014. Organic fertilizer effects on growth, crop yield, and soil microbial biomass indices in sole and intercropped peas and oats under organic farming conditions. Europ. J. Agronomy 52 (2014) 259–270

LTZ, 2008

https://www.vhe.de/fileadmin/vhe/pdfs/Publikationen/Veroeffentlichungen/Kompost-Abschlussbericht.pdf

Schulte-Geldermann, Elmar: Dissertation, Uni Kassel, 2008

Videos zur Pflanzmaschine

https://vimeo.com/464161137

https://www.youtube.com/watch?v=PSzxzmECick

